Home

Gourse Study Guide

Units of Measure Used in Canada

Metric units		
unit	measure of	symbol
ampere	electric current	A
becquerel	radioactivity	Bq
coulomb	electric charge	C
degree Celsius	temperature	${ }^{\circ} \mathrm{C}$
hectare	area	ha
hour	time	h
joule	energy	J
kilogram	mass	kg
litre	volume or capacity	L
metre	length	m
minute	time	min
newton	force	N
ohm	electric resistance	Ω
pascal	pressure	Pa
second	time	s
tonne	mass	t
volt	electric potential	V
watt	power	W
watt hour	electrical energy	Wh

Conversion Factors

Metric prefixes

name	symbol	multiply by...
micro- milli- centi-	μ	0.000001
	m	0.001
kilo-	c	0.01
mega- exa-	k	1000
	M	1000000
	E	10^{18}

Units of length

Metric conversions

$1 \mathrm{~cm}=10 \mathrm{~mm}$	$1 \mathrm{~mm}=0.1 \mathrm{~cm}$
$1 \mathrm{~m}=100 \mathrm{~cm}$	$1 \mathrm{~cm}=0.01 \mathrm{~m}$
$1 \mathrm{~km}=1000 \mathrm{~m}$	$1 \mathrm{~m}=0.001 \mathrm{~km}$

$1 \mathrm{~m}=100 \mathrm{~cm}$
$1 \mathrm{~m}=0.001 \mathrm{~km}$

Imperial conversions

1 foot $=12$ inches
1 yard $=3$ feet $\quad 1$ yard $=36$ inches
1 mile $=1760$ yards $\quad 1$ mile $=5280$ feet
Imperial to metric
Metric to imperial
1 inch $=2.54 \mathrm{~cm}$
$1 \mathrm{~cm} \doteq 0.3937$ inch
1 foot $=30.48 \mathrm{~cm} \quad 1 \mathrm{~m} \doteq 39.37$ inches
1 foot $=0.3048 \mathrm{~m} \quad 1 \mathrm{~m} \doteq 3.2808$ feet
1 mile $\doteq 1.6093 \mathrm{~km} \quad 1 \mathrm{~km} \doteq 0.6214$ mile
multiply by... 0.000001
0.001
0.01

1000
10^{18}

Other units		
unit	measure of	abbreviation or symbol
acre	area	-
degree Fahrenheit	temperature	${ }^{\circ} \mathrm{F}$
foot	length	ft . or ${ }^{\prime}$
fluid ounce	volume or capacity	fl. oz.
gallon	volume or capacity	gal.
inch	length	in. or ${ }^{\prime \prime}$
mile	length	mi.
parts per million by volume	gas concentration	ppmv
pint	volume or capacity	pt.
pounds per square inch	pressure	psi
quart	volume or capacity	qt.
yard	length	yd.

Units of volume or capacity

Metric conversions

$1 \mathrm{~mL}=1 \mathrm{~cm}^{3}$
$1 \mathrm{~L}=1000 \mathrm{~cm}^{3}$
$1 \mathrm{~m}^{3}=1000 \mathrm{~L}$

Imperial conversions

1 gallon $\doteq 277.42$ cubic inches
1 cubic foot $\doteq 6.2288$ gallons
Imperial to metric Metric to imperial
1 fluid ounce $\doteq 28.4131 \mathrm{~mL} \quad 1 \mathrm{~mL} \doteq 0.0352$ fluid ounce
1 pint $\doteq 0.5683 \mathrm{~L} \quad 1 \mathrm{~L} \doteq 1.7598$ pints
1 quart $\doteq 1.1365 \mathrm{~L} \quad 1 \mathrm{~L} \doteq 0.8799$ quart
1 gallon $\doteq 4.5461 \mathrm{~L} \quad 1 \mathrm{~L} \doteq 0.2200$ gallon
1 gallon $\doteq 4546.1 \mathrm{~cm}^{3}$
1 U.S. gallon $\doteq 3.785 \mathrm{~L}$

Other units

Area

$1 \mathrm{ha}=10000 \mathrm{~m}^{2}$
1 acre $=43560$ square feet

Mass

$1 \mathrm{mg}=1000 \mu \mathrm{~g}$
$1 \mathrm{~kg}=1000 \mathrm{~g} \quad 1 \mathrm{~g}=0.001 \mathrm{~kg}$
$1 \mathrm{t}=1000 \mathrm{~kg}$
Time
$1 \mathrm{~h}=60 \mathrm{~min}$

Course Study Guide continued

Sum of the Angles in a Triangle

In any $\triangle \mathrm{ABC}$:

$\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$

Pythagorean Theorem

In right $\triangle \mathrm{ABC}$ with
hypotenuse c :
$c^{2}=a^{2}+b^{2}$

Primary Trigonometric Ratios

When $\angle \mathrm{A}$ is an acute angle in a right triangle:

$\sin \mathrm{A}=\frac{\text { length of side opposite } \angle \mathrm{A}}{\text { length of hypotenuse }}$
$\cos \mathrm{A}=\frac{\text { length of side adjacent to } \angle \mathrm{A}}{\text { length of hypotenuse }}$
$\tan \mathrm{A}=\frac{\text { length of side opposite } \angle \mathrm{A}}{\text { length of side adjacent to } \angle \mathrm{A}}$

Trigonometric Ratios of Supplementary Angles

For an acute angle, A , and its supplementary obtuse angle, $\left(180^{\circ}-\mathrm{A}\right)$:
$\sin \mathrm{A}=\sin \left(180^{\circ}-\mathrm{A}\right)$
$\cos A=-\cos \left(180^{\circ}-A\right)$
$\tan \mathrm{A}=-\tan \left(180^{\circ}-\mathrm{A}\right)$

Sine Law

In any $\triangle \mathrm{ABC}$:
$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$

Cosine Law

In any $\triangle \mathrm{ABC}$:

$c^{2}=a^{2}+b^{2}-2 a b \cos C$

Area and Perimeter (Circumference)

Square:

$$
\begin{aligned}
& A=s^{2} \\
& P=4 s
\end{aligned}
$$

Rectangle:

Triangle:

Parallelogram: $\quad A=b h$

$$
P=2 b+2 c
$$

Trapezoid:

Circle:

$$
\begin{aligned}
& A=\pi r^{2} \\
& C=2 \pi r
\end{aligned}
$$

Volume and Surface Area

Cube:

$$
\begin{aligned}
& V=s^{3} \\
& S A=6 s^{2}
\end{aligned}
$$

Sphere:

$$
V=\frac{4}{3} \pi r^{3}
$$

Prism or cylinder: $\quad V=$ base area \times height

Pyramid or cone: $\quad V=\frac{1}{3} \times$ base area \times height

Statistical Measures

For a set of numbers:
Mean: $\frac{\text { sum of values }}{\text { number of values }}$
Median or second quartile: middle value or average of two middle values
Mode: most common value
Range: greatest value - least value
Lower quartile or first quartile: median of values less than second quartile
Upper quartile or third quartile: median of values greater than second quartile
Percentile: tells the approximate percent of numbers less than a given value

Properties of Lines and Curves

Slope of a line $=\frac{\text { rise }}{\text { run }}$
Average rate of change $=\frac{\text { Change in dependent variable }}{\text { Change in independent variable }}$

Equations

Linear: $y=m x+b$
Quadratic: $y=a x^{2}+b x+c$
Exponential: $y=a b^{x}$

Exponents

Definitions

Positive integer exponents:

$$
a^{n}=\frac{a \times a \times a \times \cdots \times a}{n \text { factors }}
$$

Zero exponents:

$$
a^{0}=1, a \neq 0
$$

Negative exponents:

$$
a^{-n}=\frac{1}{a^{n}}, a \neq 0
$$

Rational exponents:

$$
\begin{aligned}
& a^{\frac{1}{n}}=\sqrt[n]{a}, a>0 \text { if } n \text { is even } \\
& a^{\frac{m}{n}}=(\sqrt[n]{a})^{m}=\sqrt[n]{a^{m}}, a>0 \text { if } n \text { is even }
\end{aligned}
$$

Laws of Exponents

Multiplication law: $a^{m} \times a^{n}=a^{m+n}$
Division law:

$$
a^{m} \div a^{n}=a^{m-n}, a \neq 0
$$

Power of a power law: $\left(a^{m}\right)^{n}=a^{m n}$

Common Payment Periods

Frequency
Annually
Semi-annually
Quarterly
Bi-monthly
Monthly
Semi-monthly
Bi-weekly
Weekly
Daily

Meaning | Number of payments |
| :---: |
| in one year |

every year 1
every 6 months $\quad 2$
every 3 months $\quad 4$
every 2 months $\quad 6$
every month 12
twice a month 24
every 2 weeks 26
every week 52
every day 365

Ordinary Simple Annuity

Amount: $\quad A=\frac{R\left[(1+i)^{n}-1\right]}{i}$
Present value: $P V=\frac{R\left[1-(1+i)^{-n}\right]}{i}$

- A is the amount in dollars
- $P V$ is the present value in dollars
- R is the regular payment in dollars
- i is the interest rate per compounding period as a decimal
- n is the number of compounding periods

Mortgages

In Canada, the interest rate on mortgages can be compounded at most semi-annually. However, mortgage payments are usually made monthly or bi-weekly.

Accelerated bi-weekly payment:
$\frac{1}{2}$ of the monthly payment
Accelerated weekly payment:
$\frac{1}{4}$ of the monthly payment

TVM Solver

Variables

N Total number of payments
I\% Annual interest rate as a percent
PV Principal or present value
PMT Regular payment
FV Amount or future value
P/Y Number of payments per year
C/Y Number of compounding periods per year
PMT: Indicates whether payments are made at the beginning or end of the payment period

Use the Σ Int command to determine the total interest paid or earned.

