Course Study Guide

Units of Measure Used in Canada

Conversion Factors

Metric prefixes

name	symbol	multiply by
micro-	μ	0.000 001
milli-	m	0.001
centi-	С	0.01
kilo-	k	1000
mega-	М	1 000 000
exa-	Е	10^{18}

Units of length

Metric conversions

1 cm = 10 mm	1 mm = 0.1 cm
1 m = 100 cm	1 cm = 0.01 m
1 km = 1000 m	1 m = 0.001 km

Imperial conversions

1 foot = 12 inches	
1 yard = 3 feet	1 yard = 36 inches
1 mile = 1760 yards	1 mile = 5280 feet

Imperial to metric	Metric to imperial
1 inch = 2.54 cm	$1 \text{ cm} \doteq 0.3937 \text{ inch}$
1 foot = 30.48 cm	$1 \text{ m} \doteq 39.37 \text{ inches}$
1 foot = 0.3048 m	$1 \text{ m} \doteq 3.2808 \text{ feet}$
$1 \text{ mile} \doteq 1.6093 \text{ km}$	$1 \text{ km} \doteq 0.6214 \text{ mile}$

Other units		
unit	measure of	abbreviation or symbol
acre	area	-
degree Fahrenheit	temperature	°F
foot	length	ft. or '
fluid ounce	volume or capacity	fl. oz.
gallon	volume or capacity	gal.
inch	length	in. or "
mile	length	mi.
parts per million by volume	gas concentration	ppmv
pint	volume or capacity	pt.
pounds per square inch	pressure	psi
quart	volume or capacity	qt.
yard	length	yd.

Units of volume or capacity

Metric conversions

 $1 \text{ mL} = 1 \text{ cm}^3$ $1 L = 1000 cm^3$ $1 \text{ m}^3 = 1000 \text{ L}$

Imperial conversions

1 gallon \doteq 277.42 cubic inches 1 cubic foot \doteq 6.2288 gallons

Imperial to metric

1 pint \doteq 0.5683 L1 L \doteq 1.7598 pints1 quart \doteq 1.1365 L1 L \doteq 0.8799 quart1 gallon \doteq 4.5461 L1 L \doteq 0.2200 gallon $1 \text{ gallon} \doteq 4546.1 \text{ cm}^3$ 1 U.S. gallon \doteq 3.785 L

Metric to imperial 1 fluid ounce \doteq 28.4131 mL 1 mL \doteq 0.0352 fluid ounce

Other units

Area

 $1 \text{ ha} = 10 \ 000 \ \text{m}^2$ 1 acre = 43560 square feet

Mass

 $1 \text{ mg} = 1000 \ \mu \text{g}$ 1 kg = 1000 g1 g = 0.001 kg1 t = 1000 kg

Time

1 h = 60 min

In any $\triangle ABC$:

B A C $(A + (B + (C = 180)^{\circ})$

Pythagorean Theorem

In right \triangle ABC with hypotenuse *c*: $c^2 = a^2 + b^2$

Primary Trigonometric Ratios

When $\angle A$ is an acute angle in a right triangle:

Trigonometric Ratios of Supplementary Angles

For an acute angle, A, and its supplementary obtuse angle, $(180^\circ - A)$: $\sin A = \sin (180^\circ - A)$ $\cos A = -\cos (180^\circ - A)$ $\tan A = -\tan (180^\circ - A)$

Sine Law

In any $\triangle ABC$:

 $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$

Cosine Law

In any $\triangle ABC$: $c^2 = a^2 + b^2 - 2ab \cos C$

Area and Perimeter (Circumference)

Statistical Measures

For a set of numbers:
Mean: sum of values number of values
Median or second quartile: middle value or average of two middle values
Mode: most common value
Range: greatest value – least value
Lower quartile or first quartile: median of values less than second quartile
Upper quartile or third quartile: median of values greater than second quartile
Percentile: tells the approximate percent of numbers less than a given value

Properties of Lines and Curves

Slope of a line = $\frac{\text{rise}}{\text{run}}$

Average rate of change =

Change in dependent variable Change in independent variable

Equations

Linear: y = mx + bQuadratic: $y = ax^2 + bx + c$ Exponential: $y = ab^x$

Exponents

Definitions

Positive integer exponents:

 $a^n = \underbrace{a \times a \times a \times \cdots \times a}_{n \text{ factors}}$

Zero exponents: $a^0 = 1, a \neq 0$

Negative exponents:

$$a^{-n} = \frac{1}{a^n}, a \neq 0$$

Rational exponents:

а

$$\frac{1}{n} = \sqrt[n]{a}$$
, $a > 0$ if *n* is even

$$a^{\frac{m}{n}} = \left(\sqrt[n]{a}\right)^m = \sqrt[n]{a^m}, a > 0$$
 if *n* is even

Laws of Exponents

Multiplication law: $a^m \times a^n = a^{m+n}$ Division law: $a^m \div a^n = a^{m-n}, a \neq 0$ Power of a power law: $(a^m)^n = a^{mm}$

Common Payment Periods

Frequency	Meaning	Number of	payments
		in on	e year
Annually	every year		1
Semi-annually	every 6 mor	nths	2
Quarterly	every 3 mor	nths	4
Bi-monthly	every 2 mor	nths	6
Monthly	every month	1	12
Semi-monthly	twice a mor	ith	24
Bi-weekly	every 2 wee	KS	26
Weekly	every week		52
Daily	every day		365

Ordinary Simple Annuity

Amount:

$$A = \frac{R[(1+i)^n - 1]}{\cdot}$$

Present value: $PV = \frac{R[1 - (1 + i)^{-n}]}{2}$

- *A* is the amount in dollars
- *PV* is the present value in dollars
- *R* is the regular payment in dollars
- *i* is the interest rate per compounding period as a decimal
- *n* is the number of compounding periods

Mortgages

In Canada, the interest rate on mortgages can be compounded at most semi-annually. However, mortgage payments are usually made monthly or bi-weekly.

Accelerated bi-weekly payment:

 $\frac{1}{2}$ of the monthly payment Accelerated weekly payment: $\frac{1}{4}$ of the monthly payment

TVM Solver

Variables

- N Total number of payments
- I% Annual interest rate as a percent
- PV Principal or present value
- PMT Regular payment
- FV Amount or future value
- P/Y Number of payments per year
- C/Y Number of compounding periods per year
- PMT: Indicates whether payments are made at the beginning or end of the payment period

Use the Σ Int command to determine the total interest paid or earned.