Quadratic Functions \& Equations MSIP Assignment
 Answer Section

1.

Vertex: (2, 5)
Axis of symmetry: $x=2$
2. $(0,-3)$
3. The maximum height is 21 m . It reaches 21 m at 2 seconds.
4. $f(x)=-x^{2}+90 x ; 2025 \mathrm{~cm}^{2}$
5. No, Travis' throw did not reach Laura. The maximum height of the spike is 130 m at 2 seconds.
6. $f^{-1}=1 \pm \sqrt{\frac{-x+10}{3}}$; First I wrote the function in vertex form: $f(x)=-3(x-1)^{2}+10$. I switched x and y in the function and solved for y. First I subtracted 10 from both sides, then I divided both sides by -3 , took the square root of both sides, and finally I added 1 to both sides.
7. $f^{-1}(-15)=-8,-6$. First I wrote the function in vertex form and found the inverse by switching x and y and solving for y. I then substituted -15 for x and solved for y.
8. $8 \sqrt{5}+6 \sqrt{15}$
9. $-103-73 \sqrt{2}$
10. $24 \sqrt{3}-6 \sqrt{5}$
11. 2.18 s
12. -20 and 20 ; I used the formula for the discriminant and substituted $a=4, b=-k$, and $c=25$ into $b^{2}-4 a c$. I set the equation equal to zero and solved for k.
$k^{2}=400$, so $k= \pm 20$.
13. $f(x)=-\frac{1}{3}\left(x^{2}-13\right)$ or $f(x)=-\frac{1}{3} x^{2}+\frac{13}{3}$; I wrote the general function of all parabolas (factored form) that have zeros at $\pm \sqrt{13}$, which is $y=a(x-\sqrt{13})[x-(-\sqrt{13})]$. I multiplied the factors to get $y=a\left(x^{2}-13\right)$. I then substituted the point $(-5,-4)$ for x and y and solved for a.
14. $f(x)=-\frac{4}{81}(x+6)^{2}-6$ or $f(x)=-\frac{4}{81} x^{2}-\frac{16}{27} x-\frac{70}{9} ; 1$ wrote the vertex form of all parabolas that have a vertex at $(-6,-6)$, which is $y=a(x+6)^{2}-6.1$ hen substituted the point $(3,-10)$ for x and y and solved for a.
15. $f(x)=-\frac{5}{8} x(x-6)$ or $f(x)=-\frac{5}{8} x^{2}+\frac{15}{4} x$
16. $f(x)=2\left(x^{2}-6 x+4\right)$ or $f(x)=2 x^{2}-12 x+8$; I wrote the general function of all parabolas (factored form) that have zeros at $3+\sqrt{5}$ and $3-\sqrt{5}$, which is $y=a(x-3+\sqrt{5})(x-3-\sqrt{5})$. I multiplied the factors to get $y=a\left(x^{2}-6 x+4\right)$. I then substituted the point $(1,-2)$ for x and y and solved for a.
17. $(-1,-5),(2,4) ; 1$ graphed the two functions by making a table of values for each. I then located the points on the graph where the functions intersect.

18. a) $f(x)=-x^{2}+60 x$
b) $900 \mathrm{~m}^{2}$
c) length $=30 \mathrm{~m}$, width $=30 \mathrm{~m}$
19. $4 \sqrt{14}$
20. $15 \sqrt{3} \mathrm{~cm}$; The area of a square is side \times side or side ${ }^{2}$. So, to find the length of a side, I took the square root of 675. I simplified by taking the square root of 225 to get $15 \sqrt{3}$.
21. a) 2.17 m
b) 15.66 m by 7.66 m
22. There are two zeros. I simplified the function to $f(x)=-4 x^{2}+22 x-3$ and calculated the discriminant to get 436 . Since the discriminant is greater than zero, the function has two zeros.
23. a) $f(x)=-\frac{5}{32} x(x-18)$
b)

c) Yes, the truck can pass through the tumnel. The height of the tunnel is greater than 8 m for about 10 m in width, so there is enough room for the truck to pass through.
24. a) about 27.5 m
b) about 0.93 s

