CHAPTER 1 EXAM REVIEW FINAL ANSWERS

1. e
2. a
3. h
4. b
5. c
6. d
7. i
8. f
9. $(-2,5)$
10. $(4,6)$

4 paperback books and 6 hard cover books
11.

Simplify both equations
(1) $2 x-8+y=6$
(2) $3 x-2 y+6=13$

Solve (1) for y
(3) $y=-2 x+14$

Sub (3) into (2)
$3 x-2(-2 x+14)+6=13$
$3 x+4 x-28+6=13$
$7 x=35$
$x=5 \quad \therefore x=5$ and $y=4$

Check

$$
\begin{array}{ll}
L S=2(x-4)+y \quad R S=6 & L S=3 x-2(y-3) \quad R S=13 \\
L S=2(5-4)+4 & L S=3(5)-2(4-3) \\
L S=2(1)+4 & L S=15-2(1) \\
L S=6 & L S=13 \\
\because L S=R S \text { for both equations the solution } x=5, y=4 \text { is correct }
\end{array}
$$

12. a) Let the cost of a smoked turkey sub in dollars be t and the cost of a veggie sub in dollars be v.

$$
\begin{aligned}
& 2 t+5 v=29 \\
& 4 t+3 v=30
\end{aligned}
$$

b)

| $(1) \times 2$ | $4 t+10 v$ | $=58$ | sub v |
| ---: | :--- | ---: | :--- |$=4$ into (1)

A smoked turkey sub costs $\$ 4.50$ and a veggie sub costs $\$ 4$.
13. Let x represent the amount of the 25% copper alloy used, and y represent the amount of the 50% alloy used.

$$
\begin{aligned}
& x+y=1500 \\
& 0.25 x+0.5 y=(0.4)(1500)
\end{aligned}
$$

Solve using substitution or elimination (elimination is shown here)
(1) $x+y=1500$
(2) $\times 4 \quad x+2 y=2400$
subtract $-y=-900$

$$
\begin{aligned}
& \text { sub } \mathrm{y}=900 \text { into }(1) \\
& \begin{aligned}
x+900 & =1500 \\
x & =600
\end{aligned}
\end{aligned}
$$

solve $\quad y=900$
To make 1500 g of an alloy that is 40% copper, 600 g of the 25% copper alloy and 900 g of the 50% copper alloy should be used.
14. Let x litres represent the number of litres of the 25% acidic solution to use, and y represent the number of litres of the 50% acidic solution to use.

$$
\begin{aligned}
& x+y=500 \\
& 0.25 x+0.5 y=(0.35) 500
\end{aligned}
$$

Solve using substitution or elimination (substitution is shown here)

	Sub (3) into (2)	
Solve (1) for y	$0.25 x+0.5(500-x)=175$	sub $x=300$ into (3)
(3) $y=500-x$	$0.25 x+250-0.5 x=175$	$y=500-300$
	$-0.25 x=-75$	$y=200$

$x=300$
To make the 35% acidic solution, Chris should mix 300 L of the 25% solution and 200 L of the 50% solution.
15. Let the speed of the houseboat in still water (no current) be h, and the speed of the river's current be c, both in kilometres per hour.

Upstream: $48=(h-c) \times 6$
Downstream: $48=(h+c) \times 4$

$$
8=h-c \quad(\text { divided both sides by } 6)
$$

$12=h+c \quad$ (divided both sides by 4)
Solve by elimination

$$
\begin{aligned}
& 8=h-c \quad \text { sub } h=10 \text { into } 8=h-c \\
& 12=h+c \quad 8=10-c \\
& \text { add } 20=2 h \quad-2=-c \\
& 10=h \quad 2=c
\end{aligned}
$$

The houseboat travelled at $10 \mathrm{~km} / \mathrm{h}$ in still water, and the river current was $2 \mathrm{~km} / \mathrm{h}$.
16. Let f be the speed of the fishing boat in still water, and c be the speed of the river's current.

Upstream: $72=(f-c) \times 4$
Downstream: $72=(f+c) \times 3$
$18=f-c \quad$ (divided both sides by 4)
$24=f+c \quad$ (divided both sides by 3)
Solve by elimination

$$
\left.\begin{array}{rlrl}
18 & =f-c & \text { sub } \mathrm{f}=21 \text { into } 18=\mathrm{f}-\mathrm{c} \\
24 & =f+c \\
\text { add } & 42 & =2 f & 18
\end{array}\right)=21-c
$$

The fishing boat's speed in still water was $21 \mathrm{~km} / \mathrm{h}$, and the river's current was $\mathbf{3 k m} / \mathrm{h}$.

