4. Given this graph of the function $f(x)$:

Find:
a. $f(-4)=2$
b. $f(0)=0$
c. $f(3)=-1.7$
d. $f(-5)=0$
e. x when $f(x)=2$
$=-4$
f. x when $f(x)=0$

5. Find an equation of a linear function given $h(1)=6$ and $h(4)=-3$.

HINT: Think "What has been given?" "What do I need to write a linear equation?"
For a linear function you must determine slopeond y mint Slog t

$$
\begin{aligned}
& M=\frac{-3-6}{4-1} \\
&=\frac{-9}{3} \\
&=-3
\end{aligned} \quad y \text {-int } \quad \begin{aligned}
& y=m x+b \\
& 6=-3(1)+b \\
& 6=-3+b \\
& q=b
\end{aligned} \quad \begin{aligned}
& \text { equa+ix}
\end{aligned} \quad \begin{aligned}
& p(x)=-3 x
\end{aligned}
$$

6. Determine the maximum result if $f(x)=-3 x^{2}+24 x$ is a quadratic that opens down.

HINT: The maximum occurs halfway between the x-intercepts.
THINK: How do I find the intercepts? How do I find the max?
Challenge: Use function notation to find your answer.

$$
f(x)=-3 x(x-8)
$$

$$
x=0 \quad A N D \quad x=8
$$

Axis of symmetry is hatfary between 0 mend -8

$$
\begin{aligned}
& \text { Axis of symmetry is hat fiat between } 0 \text { find vertex. sub in } x=-4 \\
& \text { midpoint: } \frac{0+8}{2} \quad \text { To fin } \\
& f(4)=-3(4)^{2}+24(4)
\end{aligned}
$$

$$
=\frac{i}{2}
$$

$$
4)=-3(4)^{2}+24(4)
$$

$$
=-3(16)+96
$$

$$
=48
$$

