MPM 2DI EXAM REVIEW - Chapter 2: Analytic Geometry and Chapter 3: Geometric Properties

Use $\triangle J K L$ for Questions 1 and 2.

1. Using the appropriate formulas learned in class, find the coordinates of the midpoint and the length of each line segment in $\triangle J K L$. Classify $\triangle J K L$ as isosceles, scalene or equilateral. Explain.
2. For $\triangle J K L$, find an equation of the line that contains the...
(a) the median from vertex J
(b) the median from vertex K
(c) the right bisector of side JL.
3. On a street map, the coordinates of the two fire stations in a town are $\mathrm{A}(10,63)$ and $\mathrm{B}(87,30)$. A neighbour reports smoke coming from the kitchen of a house at $\mathrm{C}(41,18)$. Which fire station is closer to this house?
4. Use analytic geometry to classify the quadrilateral with vertices $\mathrm{J}(-2,1), \mathrm{K}(2,3), \mathrm{L}(4,-1)$ and $\mathrm{N}(0,-3)$. Explain your reasoning and show all your work.
5. (a) Draw the triangle with vertices $\mathrm{J}(2,10), \mathrm{K}(6,-6)$, and $\mathrm{L}(14,6)$.
(b) Calculate the coordinates of the midpoint, M , of side JK and the coordinates of the midpoint, N , of side JL.
(c) Show that MN is half the length of KL.
(d) Show that MN is parallel to KL.
6. Does the point $\mathrm{P}(-3,-2)$ lie on the right bisector of the line segment with endpoints $\mathrm{Q}(-2,5)$ and $\mathrm{R}(4,1)$? Show your work.
7. Find an equation for each circle centred at the origin and passing through the point
(a) $\mathrm{J}(0,7)$
(b) $\mathrm{K}(5,6)$
(c) $(8, \sqrt{3})$
8. Find the diameter and area of the circle defined by $x^{2}+y^{2}=64$.
9. What is the centroid of a triangle? Describe how to use analytic geometry to find the coordinates of the centroid of a triangle, if you are given the coordinates of the three vertices.
10. Verify that $\triangle D E F$ is a right triangle, given that $D(2,14), E(8,4)$ and $C(18,10)$
11. Find the midpoint of $\left(\frac{-1}{2}, 2\right)$ and $\left(3, \frac{2}{3}\right)$. (No decimals)
12. If the midpoints of adjacent sides of a rhombus are joined, what type of parallelogram is the inner (Varignon) parallelogram?
13. Find an equation for each of the right bisectors of the sides of $\Delta J K L$, where $\mathrm{J}(1,2), \mathrm{K}(9,8)$ and $\mathrm{L}(5,0)$.
14. Find the centre of the circle that passes through the three non-collinear points: $P(9,-3), Q(8,6)$ and $R(-1,5)$.

FINAL ANSWERS

1. midpoint $\operatorname{JK}\left(-1, \frac{3}{2}\right)$, midpoint $\operatorname{KL}\left(0, \frac{-5}{2}\right)$, midpoint $\mathrm{JL}(2,0) ; \overline{K L}=3 \sqrt{5}$ units, $\overline{J L}=2 \sqrt{17}$ units, $\overline{J K}=\sqrt{41}$ units. It is scalene since $\overline{K L} \neq \overline{J L} \neq \overline{J K}$
2. a) $y=6.5 x-2.5$
b) $y=0.2 x-0.4$
c) $y=\frac{1}{4} x-\frac{1}{2}$
3. Fire station B is closer since $\overline{A C}>\overline{B C}$.
4. It is a square, since it is a quadrilateral with adjacent sides that are perpendicular (slopes of adjacent sides are negative reciprocals of each other), in addition to all sides being the exact same length.
5. a)

b) $\mathrm{M}(4,2)$ and $\mathrm{N}(8,8)$
c) $\overline{M N}=2 \sqrt{13}, \overline{K L}=4 \sqrt{13}$. Since $\overline{K L}=2 \overline{M N}$, MN is half of KL.
d) Since $m_{M N}=\frac{3}{2}=m_{K L}, \mathrm{MN} \| \mathrm{KL}$
6. No. (SHOWYOUR WORK)
7.

a) $x^{2}+y^{2}=49$
b) $x^{2}+y^{2}=61$
c) $x^{2}+y^{2}=67$
8. The diameter is 16 units. The area of the circle is about 201 square units.
9. The centroid is the point where the three medians of a triangle intersect. Determine the equation of two of the medians of the triangle and then find the point of intersection of these two lines.
10. Since the slopes of $D E$ and $E F$ are negative reciprocals, $D E \perp E F$. Hence, $\triangle D E F$ is a right triangle.
11. $\left(\frac{5}{4}, \frac{4}{3}\right)$
12. A rectangle.
13. The equation of the right bisector of JL is $y=2 x-5$. The equation of the right bisector of LK is $y=-\frac{1}{2} x+\frac{15}{2}$. The equation of the right bisector of JK is $y=-\frac{4}{3} x+\frac{35}{3}$.
14. The centre is $(4,1)$

