Date: _

BLM 2–9 (page 1)

Chapter 2 Review

2.1 Midpoint of a Line Segment

1. Find the midpoint of each line segment.

- **2.** a) Determine the midpoint of the line segment with endpoints E(-6, 7) and F(-2, 1).
 - **b**) Determine the midpoint of the line segment with endpoints E(-5, -9) and F(2, 4).
- **3.** a) Draw the triangle with vertices A(−5, 2), B(−1, −4), and C(3, 3).
 - **b**) Draw the median from vertex A. Then, find an equation in the form y = mx + b for this median.
 - c) Draw the right bisector of AC. Then, find an equation in the form y = mx + b for this right bisector.
 - **d**) Draw the altitude from vertex C. Then, find an equation in the form y = mx + b for this altitude.

2.2 Length of a Line Segment

- 4. Determine the length of the line segment defined by each pair of points.
 a) R(-5, 6) and S(-2, 6)
 - **b**) T(4, -5) and U(4, 5)
 - **c**) M(-5, 6) and N(3, -4)
 - **d**) P(-2, 6) and Q(7, -3)
- 5. a) Determine the length of the median from vertex R of \triangle PQR.
 - **b**) Determine the perimeter of $\triangle PQR$. Round your answer to the nearest tenth of a unit.

- **6.** a) Draw the triangle with vertices X(1, 4), Y(−3, −2), and Z(3, −6).
 - **b**) Use analytic geometry to show that $\angle XYZ = 90^{\circ}$.
 - c) Determine the area of \triangle XYZ.

2.3 Apply Slope, Midpoint, and Length Formulas

7. Show that the triangle with vertices P(-1, 0), Q(0, $\sqrt{3}$), and R(1, 0) is equilateral.

8. a) Show algebraically that this triangle is isosceles.

- **b**) Find the midpoints of the equal sides.
- c) Show algebraically that the line segment joining the midpoints of the equal sides is parallel to the third side of the triangle.
- **9.** On a map, a ski hill has a chair lift running straight from A(30, 25) to B(60, 55).
 - a) How long is the section of the chair lift if each unit on the map grid represents 1 m, to the nearest tenth of a metre?
 - **b**) Is the point C(50, 45) on the chair lift? Explain your reasoning.

2.4 Equation for a Circle

10. Determine an equation for each circle.

- **11.** Find an equation for the circle that is centred at the origin and
 - a) has a radius of 3.7
 - **b**) has a radius of $\sqrt{8}$
 - c) has a diameter of 18
 - **d**) passes through the point (3, 5)
- 12. a) Show that the line segment joining C(-2, 5) and D(-5, 2) is a chord of the circle defined by $x^2 + y^2 = 29$.
 - **b**) Determine an equation for the right bisector of the chord CD.
- 13. a) Show that point B(-3, -2) lies on the circle defined by $x^2 + y^2 = 13$.
 - **b**) Find an equation for the radius from the origin O to point B.
 - c) Find an equation for the line that passes through B and is perpendicular to OB.

Chapter 2 Review

b) slope XY = $\frac{3}{2}$; slope YZ = $-\frac{2}{3}$; since the slopes

are negative reciprocals, $\angle XYZ = 90^{\circ}$.

- c) 26 square units PQ = QR = PR = 2; all t
- 7. PQ = QR = PR = 2; all three sides have equal length, so $\triangle PQR$ is equilateral.
- 8. a) DE = EF = $\sqrt{26}$; since two sides have equal length, \triangle DEF is isosceles.

BLM 4.14.1
(page 3)
b)
$$G\left(-\frac{3}{2}, \frac{1}{2}\right)$$
 is the midpoint of DE; $H\left(\frac{1}{2}, \frac{7}{2}\right)$ is
the midpoint of EF.
c) slope $GH = \frac{3}{2}$; slope $DF = \frac{3}{2}$; since the slopes are
equal, the two segments are parallel.
9. a) 42.4 m
b) Yes. The line $y = x - 5$ contains the points A and B.
Since it also contains the point C, and C is between
A and B, C is on the chair lift.
10. a) $x^2 + y^2 = 49$ **b**) $x^2 + y^2 = 37$ **c**) $x^2 + y^2 = 6.25$
11. a) $x^2 + y^2 = 13.69$ **b**) $x^2 + y^2 = 34$
12. a) Check that both endpoints are on the circle.
 $C(-2, 5)$:
L.S. = $x^2 + y^2$ **R.S.** = 29
 $= (-2)^2 + 5^2$
 $= 4 + 25$
 $= 29$
L.S. = **R.S.**
 $D(-5, 2)$:
L.S. = **R.S.**
 $D(-5, 2)$:
L.S. = **R.S.**
b) $y = -x$
13. a) Check that the point B(-3, -2) satisfies the equation
 $x^2 + y^2 = 13$.
L.S. = $x^2 + y^2$ **R.S.** = 13
 $= (-3)^2 + (-2)^2$

L.S. =
$$x + y$$

= $(-3)^2 + (-2)^2$
= $9 + 4$
= 13
L.S. = **R.S.**
b) $y = \frac{2}{3}x$ **c)** $y = -\frac{3}{2}x - \frac{13}{2}$