7.2 Geometric Sequences

A **Geometric Sequence** is a sequence that has a common ratio between the terms. (ie. you multiply by some number to move sequentially through the sequence)

Eg. 1) Given $t_n = 5(-2)^{n-1}$ find the first 4 terms of the sequence.

$$t_{1} = 5(-2)^{1-1}$$

$$= 5(-2)^{0}$$

$$= 5(1)$$

$$= 5$$

$$t_{3} = 5(-2)^{3-1}$$

$$= 5(4)$$

$$= 20$$

$$= 5(-2)^{3}$$

$$= 5(-2)^{3}$$

$$= 5(-2)^{3}$$

$$= -10$$

$$= 5$$

$$t_{3} = 5(-2)^{3}$$

$$= 5(-2)^{3}$$

$$= 5(-2)^{3}$$

$$= 5(-2)^{4}$$

$$= 5(-2)^{3}$$

$$= 5(-2)^{4}$$

$$= 5(-2)^{4}$$

$$= 5(-2)^{4}$$

$$= -40$$

$$= 80$$

 $t_2 = 5(-2)^{2-1}$

*Note > if common ratio is negative, the terms alternate between positive and negative. Eg. 2) Find the tenth term of the sequence $t_n = 3(2)^{n-1}$.

= 1536

1) on calculator

Eg. 3) Find the general term and recursive formula for the sequence 36, 18, 9, ...

$$t_n = r t_{n-1}$$

$$=\frac{1}{2}t_{n-1}$$
, $t_1 = 36$

$$t_n = ar^{n-1}$$

General Term
$$t_n = ar^{n-1}$$

$$t_n = 36\left(\frac{1}{a}\right)^{n-1}$$

$$r = \frac{18}{36} = \frac{1}{2}$$

- Eg. 4) Determine whether the following sequences are geometric, arithmetic or neither.
 - a) 99, 33, 11, ... Geometric (=3
 - b) -2, 10, 22, 34 Arithmetic d= 12
 - c) 3, 3, 3, ... Geometric r=1
 Arithmetic d=0
 - d) 47, 44, 40, 32 Weither

Eg. 5) Determine the number of terms in the sequence 3, 6, 12, ..., 384.

$$\frac{128}{3} = ar^{n-1}$$

$$r = \frac{6}{3} = 2$$

$$a = 3$$

$$\frac{384}{3} = 2^{n-1}$$
Rewrite with base the

$$\frac{128}{2} = 2^{n-1}$$
 Rewrite with base the same $2^n = 2^{n-1}$ as ratio.

i.
$$7=n-1$$
 i. There are $7+1=n$ 8 terms in the sequence.

Eg. 6) In a geometric sequence t_6 = -2048 and t_{11} = -2097152. Find the general term and the first 3 terms of the sequence.

$$\frac{-269715}{-2048} = r$$

$$1024 = r$$

$$-2048 = \alpha(4)^{5}$$

$$-2048 = \alpha(4)^{5}$$

$$-2048 = \alpha(4)^{5}$$

$$-2048 = \alpha(4)^{5}$$

$$-2048 = \alpha$$

$$4 = r$$

$$-2048 = \alpha$$

$$1024 = r$$

$$-2(4)^{3-1}$$

$$-2(4)^{3-1}$$

$$-2(4)^{3-1}$$

$$-2(4)^{3-1}$$

$$-2(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3(4)^{3-1}$$

$$-3$$

Eg. 7) Your boss comes to you and offers you a new pay structure:

Click Here to see Pay Structure

Which plan would you choose? Justify your answer mathematically.

Pay
$$30^{th}$$
 Day:
 $t_n = \alpha r^{n-1}$
 $t_{30} = 0.01(2)^{30-1}$
=5 368 709.12