4.7 Applications

Think & Play: A) You buy an Android tablet for your math teacher. It costs \$175 + HST. What is the final cost?

$$HST = 13\%$$
 $175 \times 0.13 = 22.75$
Total: $175 + 22.75 = 197.75$
 $0R$. $175 \times 1.13 = 197.75$

The price has increased 13%. The growth rate = $\frac{13\%}{1 + 13}$ or $\frac{1}{1 + 13}$ or $\frac{1}{1 + 13}$ or $\frac{1}{1 + 13}$

B) For a ball dropped from a height of 1 meter, the equation that models it's rebound height after each bounce is $y = 0.75^x$.

The height has decreased
$$\frac{25}{8}\%$$
. The decay $\frac{1}{1}$ The dec

The function $f(x) = ab^x$ can be used as a model to solve problems involving exponential growth and decay.

> $f(x) = a(b^x)$ Where a is the initial value, b is the growth factor and x is the number of compounding periods.

Eg. 1) A hockey card is purchased in 1990 for \$5.00. The value increases by 6% each year. Write an equation and determine it's

Falue in 2011.

$$\frac{6}{100} = 0.06$$

$$y = 5(1.06)^{2}$$

$$= 5(1.06)^{2}$$

$$= 16.99$$

Eg. 2) In 1980 the population of the town of St. Albert, Alberta was 20 000. If the town grows at a rate of 2% a year, what was the population in 2014?

$$y = 20000 (1.02)^{x}$$

= 20000 (1.02)³⁴
= 39213.5

... In 2014 the population is about 39213.

There are growth and decay applications that involve doubling times or half-lives. The formula can be altered to:

In-lives. The formula can be altered to:
$$N(t) = N_o(2)^{\frac{t}{d}}$$
 doubling time
$$N(t) = N_o\left(\frac{1}{2}\right)^{\frac{t}{d}}$$
 amount of time to have so% left. (half-life)

Eg. 3) For a biology experiment, the number of cells present after 4 hours is 10 000. If the number of cells doubles every 2 hours, how many were there originally?

$$y = ab$$
 4
 $10000 = a(2)^{2}$
 $10000 = a(2)^{2}$
 $10000 = 4a$
 $10000 = a$
 4
 $2500 = a$

.: There were 2500 cells to begin with Eg. 4) Another experiment starts with 1000 cells. After 4 hours the count is estimated to be 256 000. What is the doubling period for the cells?

The cells?
$$y = ab^{3}$$
 $256000 = 1000(2)^{3}$
 $256000 = 2^{4}$
 $256 = 2^{4}$
 $2(4 - 8) = 1.4$
 $2(4 - 1) = 16$
 $2(4 - 0.2) = Too big$
 $2(4 - 0.5) = 256$
 $2 - 256$
 $2 - 256$
 $2 - 256$
 $2 - 256$
 $2 - 256$
 $2 - 256$
 $2 - 256$

2. () 300%
how/ong until?
$$y = 15000(1.03)^n$$

it Avables? $y = 15000(1.03)^n$
 $30000 = 15000(1.03)^n$